Fracture-induced activation in mechanophore-linked, rubber toughened PMMA

Asha-Dee N. Celestine a, d, Brett A. Beiermann b, d, Preston A. May c, d, Jeffrey S. Moore c, d, Nancy R. Sottos b, d, Scott R. White a, d, *

a Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
b Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
c Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
d Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

Article info
Article history:
Received 18 March 2014
Received in revised form 4 June 2014
Accepted 8 June 2014
Available online 14 June 2014

Keywords:
Mechanophores
Fracture
Poly(methyl methacrylate)

Abstract
Fracture-induced mechnochemical activation is achieved for the first time in a structural engineering polymer. Rubber toughened PMMA is lightly cross-linked (1.0 mol%) with the mechanophore spiropyran by free radical polymerization. Single Edge Notch Tension tests are performed on the spiropyran-linked material and a distinct change in color and fluorescence is detected at the crack tip, indicating the mechnochemical transformation of the spiropyran molecules. The degree of mechnophore activation is quantified via fluorescence imaging and is observed to increase with increasing crack length. The region of mechnophore activation correlates directly with the size of the plastic zone ahead of the crack tip.

1. Introduction
Fracture in elastic polymers such as poly(methyl methacrylate) (PMMA) has been studied extensively using extrinsic, non-destructive techniques for the evaluation of damage, such as piezoelectric films [1], optical fibers [2,3] and both fluorescent and photoluminescent sensors [4–8]. In this paper, we explore an intrinsic method for damage evaluation by using force-activated probe molecules (mechanophores) to produce optical changes in PMMA in response to an applied mechanical force.

While earlier research in mechnochemistry focused on polymer degradation via mechanical stress [9–12], modern mechnochemistry exploits mechanical stress as the stimulus for favorable chemical reactions in polymers. Mechnochemically active polymers have been achieved through the design and synthesis of novel mechnophores that are grafted into the backbone of the polymer chain or used as cross-linkers. As force is transferred from the polymer to the mechnophore, the chemical structure of the mechnophore is altered. The reaction of various mechnophores has been investigated both in solution [12–19] and in bulk form [20–29]. Spiropyran (SP) is one of the first mechnophores studied [20] and has been used in both solution [13] and solid state experiments [20–23] to investigate this favorable mechnochemical effect.

Spiropyran undergoes a reversible electrocyclic ring opening reaction in response to tensile force, heat and UV light [13,20–23,29] (see Fig. 1). This ring opening ruptures the spiro carbon–oxygen (C–O) bond and transforms the SP molecule from the colorless spiropyran form to the highly colored, and fluorescent, merocyanine (MC) form. Mechnophore activation is also reversible by irradiating the mechnophore with visible light at room temperature. When SP is grafted into a bulk polymer the change in color and fluorescence of the polymer is a result of the mechnochemical reaction of the mechnophore and it provides a convenient and intrinsic means of sensing mechanical stress.

Potisek and co-workers first demonstrated this reaction with spiropyran-linked addition polymers subjected to ultrasonic pulsing in the solution state [13]. Davis and co-workers later showed that the SP to MC reaction can be triggered in solid state polymers [20]. They further determined that mechnophore activation only occurs when the polymer chains are attached such that force is transmitted across the spiro C–O bond. SP activation has also been demonstrated by other researchers for cross-linked PMMA under torsion [21] and linear PMMA under tension at elevated...
temperatures [22]. In all reported cases of force-induced SP activation in glassy bulk polymers, the SP to MC reaction occurred at the onset of yield or just beyond the yield point.

This post-yield SP activation in bulk polymers suggests that large strain at relatively high stress is a necessary condition for the mechanochemical reaction during mechanical testing. For glassy polymers such as PMMA, however, the predominant failure mechanism is crazing [30] while plastic deformation or shear yielding occurs on a much smaller scale [30–32]. Enhanced SP activation should result by increasing the degree of plastic deformation in PMMA by suppressing craze formation via compression testing [30], plasticizing the material with solvents [33], elevating the temperature [34] or incorporating core–shell rubber nanoparticles [35–41]. The incorporation of core–shell rubber nanoparticles is a well-documented strategy for increasing plastic deformation in polymers and provides not only an avenue for enhanced SP activation, but also a synergistic increase in fracture toughness.

The increased plastic deformation afforded by rubber nanoparticles leads to toughening via a three step mechanism [35,42,43]. As the material is stressed, micro–crazes develop around the nanoparticles resulting in both elastic and plastic strains on their outer surfaces [35,44]. These strains lead to cavitation within the nanoparticle as the more ductile, rubbery core deforms and detaches from the rigid shell. This cavitation triggers plastic deformation around and between nanoparticles resulting in shear yielding along the crack path [43,45,46]. Shear yielding dissipates energy and leads to macroscopic toughening of the material [35].

It is postulated that the activation energy associated with the spiropyran to merocyanine conversion is lowered upon the application of force [14,20]. This hypothesis has been tested and supported by molecular dynamics models [15,20,47] and also by macroscopic experiments and simulations [48,49]. Silberstein and co-workers were able to accurately predict the mechanical and activation response of cross-linked SP-PMMA using a potential energy surface model incorporating force modification. For the relatively low strain rates investigated (10^{-4}–10^{-2} s^{-1}), they showed that the activation of the SP was achieved by a stress-induced lowering of the activation energy barrier.

In this work, we evaluated the intrinsic damage sensing potential of spiropyran-linked PMMA via fracture-induced SP activation at low strain rates. The SP mechanophore was used as a low profile (0.05 mol%) secondary cross-linker in rubber toughened, cross-linked PMMA (see Fig. 2). Specimens were tested to failure using the Single Edge Notch Tension (SENT) fracture test. Activation of the spiropyran during fracture was assessed via optical and in situ fluorescence imaging. The apparent dependence of SP activation on plastic deformation reported by other researchers was also investigated by comparing the size of the SP activation zone with the size of the region of plastic deformation ahead of the crack tip.

2. Materials and methods

2.1. Material synthesis

Cross-linked PMMA (Fig. 2) with a cross-link density of 1.0 mol% was prepared by a free radical polymerization reaction. Ethylene glycol dimethacrylate (EGDMA) served as the primary cross-linker (0.95 mol%) while an acrylate functionalized spiropyran molecule [20] was used as the secondary cross-linker (0.05 mol%). Benzoyl peroxide (BPO) was used as the reaction initiator and N,N-dimethylamylaniline (DMA) as the activator. The cross-linked PMMA was toughened using 7.3 wt% core–shell rubber nanoparticles (Paraloid EXL 2650a) obtained from Dow Chemicals. These nanoparticles possess a butadiene-styrene (MBS) core and a PMMA shell with an average particle diameter of 250 nm.

Specimens were prepared by combining 15 mg BPO, 2.3 mg spiropyran, 75 mg MBS nanoparticles and 1 mL methyl methacrylate (MMA) in a scintillation vial. The mixture was then ultra-sonicated for 3 min (pulsed 0.2 s on, 0.2 s off) in an ice bath to uniformly disperse the core–shell rubber nanoparticles and ensure proper mixing of all components. After sonication, the vial was sealed and flushed with argon for 45 s. 16.8 μL EGDMA and 6 μL DMA were then added to the vial and the vial flushed again with argon for 45 s. The mixture was subsequently injected into a sealed glass mold of rectangular cross-section and allowed to polymerize for 24 h.

Transmission Electron Microscope (TEM) images of the polymerized material were obtained using a Philips CM200 Transmission Electron Microscope (TEM) images of the polymerized material were obtained using a Philips CM200
Electron Microscope. These images revealed the presence of well-dispersed rubber nanoparticles throughout the SP-PMMA material (see Fig. 3). The rubber toughened SP-PMMA material was then cut into 0.9 mm thick rectangular specimens with gage dimensions of 28 x 5 mm (see Fig. 4a). The specimens were then tabbed at both ends with heavy gage paper and placed under a 532 nm wavelength LED light for ca. 24 h to drive virtually all the mechanophores to the closed SP (colorless) form before testing.

Two types of control specimens were also synthesized using the method described above. The first control incorporated a difunctional SP mechanophore (Fig. 2, structure c) as the secondary cross-linker in which the polymer chains are not attached across the central spiro C=O bond and no force activation can occur. The second control was a rubber toughened PMMA which contained no SP mechanophore. A third type of specimen was prepared with SP-linked PMMA, but no rubber nanoparticles were included in order to isolate the effects of increased plastic deformation. Details of the synthesis recipes and material properties of all four material types can be found in the Supplementary Information. All specimens were irradiated with the 532 nm wavelength LED light for 24 h prior to testing.

2.2. Mechanical testing

Single Edge Notch Tension (SENT) tests were performed using a custom-built experimental setup that allows simultaneous mechanical testing and in situ full field fluorescence monitoring of the specimen gage section [22]. A screw-driven rail table in which both grips translate in opposite directions at the same rate was used to ensure that the central gage section of the specimens remained in the field of view for fluorescence imaging. Load was measured using a 220 N Honeywell Sensotech load cell. Specimens of all four material types were first prestretched to approximately 35% axial strain at a constant displacement rate of 5 µm/s in order to improve alignment and activation of the SP during SENT testing. (This displacement rate corresponds to a strain rate of 0.18 x 10^{-3} s^{-1}. After prestretching, the specimens were notched to a depth of approximately 1.5 mm at the center of the gage section with a razor blade yielding a normalized crack length (a/W) of ca. 0.3 (see Fig. 4b). Specimens were then irradiated with the 532 nm LED light for 24 h. After irradiation, the notched specimens were tested to failure at a displacement rate of 5 µm/s. Applied load and displacement data were collected every 0.5 s.

2.3. Fluorescence imaging

A full field fluorescence imaging setup adapted from the work of Beiermann and co-workers [22] was used to capture fluorescence images of the specimens’ gage sections during SENT testing at 5 s intervals (see Fig. 5). A CrystaLaser 532 nm diode laser was used to excite the specimens at a fixed laser power of 800 µW. The emitted light from the specimens was then passed through a focusing lens and a long pass filter (>575 nm) so that only fluorescence would be
transmitted to a color CCD detector (AVT Stingray model F-125C). The fluorescence intensity value for each image was defined as the average red channel intensity of the CCD over the entire field of view of the specimen.

Optical images of all specimen types were also acquired after testing using a Canon EOS-1Ds Mark I SLR digital camera with a Canon 65 mm macro lens. The fracture surfaces of the rubber toughened SP-PMMA specimens were imaged with a Philips XL30 ESEM-FEG field emission environmental Scanning Electron Microscope (SEM).

2.4. Plastic zone size measurements

The length (or size) of the plastic zone \(r_{\text{plastic}} \) is the distance from the crack tip to the boundary of the plastic zone measured along the crack axis. For the specimens in this work (tested under plane strain conditions) the plastic zone size was calculated using Irwin's plastic zone correction [50]:

\[
r_{\text{plastic}} = \frac{1}{3\pi} \left(\frac{K_I}{\sigma_Y} \right)^2
\]

where the yield stress \(\sigma_Y \) was obtained from tensile tests of prestretched specimens. Stress intensity factor \((K_I) \) values were obtained from the SENT test results using [51]:

\[
K_I = \frac{P}{tW^{1.2}} \left[1.99 \left(\frac{a}{W} \right)^{1/2} - 0.41 \left(\frac{a}{W} \right)^{3/2} + 18.7 \left(\frac{a}{W} \right)^{5/2} - 38.48 \left(\frac{a}{W} \right)^{7/2} + 53.85 \left(\frac{a}{W} \right)^{9/2} \right]^{1/2}
\]

where \(P \) is the applied load, \(a \) is the crack length, \(W \) is the specimen width and \(t \) is the specimen thickness.

2.5. Activation zone size measurements

Preliminary analysis of the fluorescence images acquired during SENT testing revealed approximately circular regions of SP activation ahead of the crack tip. Thus, three measures of activation zone size were obtained; the length and width of the activation zone and also an equivalent activation zone size obtained by assuming the activation zone is perfectly circular. Analysis of the fluorescence images was performed using the image processing software ImageJ (version 1.45b). The length of the activation zone \(l_{\text{act}} \) in each image was obtained by performing a red channel intensity line scan from the specimen crack tip to the edge of the specimen measured along the crack propagation direction. The limit of this activation zone was taken as the location at which the red channel intensity was at least 1 standard deviation above the background intensity level. The value of \(l_{\text{act}} \) for each image was then calculated as the distance between the current crack tip and the activation zone limit (see Fig. 6a, d).

Fig. 6. Schematics of activation zone size measurements: (a) Fluorescence image during SENT testing showing activation zone length \(l_{\text{act}} \) definition. (b) Fluorescence image during SENT testing showing activation zone width \(w_{\text{act}} \) definition. (c) Fluorescence image during SENT testing showing equivalent activation zone size \(r_{\text{act}} \) definition. (d) Red intensity plot for activation zone length measurement. (e) Red intensity plot for activation zone width measurement. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Effect of prestretching on the mechanical and activation response of rubber toughened SP-PMMA during SENT testing.
The width of the activation zone \((w_{\text{act}})\) was then determined by performing line scans perpendicular to the crack axis to find the widest region of activation. Again, the limits of activation were defined as the positions where the red channel intensity was at least 1 standard deviation above the background intensity (see Fig. 6b, e).

To obtain the equivalent activation zone size \((r_{\text{act}})\), the region of the image ahead of the crack tip was analyzed with a threshold set to 1 standard deviation above the background intensity. The total number of pixels above the threshold was then equated to the area of a circular activation zone with diameter \(r_{\text{act}}\) (see Fig. 6c). The various measures of activation zone size were then compared to the calculated values of \(r_{\text{plastic}}\) to investigate the relationship between SP activation and plastic deformation ahead of the crack tip.

3. Results and discussion

3.1. Mechanical testing

Prestretching the specimens prior to SENT fracture testing increased the degree of mechanophore activation. This phenomenon was demonstrated in the work by Beiermann et al. where maximum fluorescence intensity was previously observed for mechanically activated SP-PMMA when the merocyanine (MC) molecules were aligned in the direction of applied tensile force [52]. The noticeable improvement in activation with prestretching (Fig. 7) is a result of chain alignment in the direction of applied force which coincides with the predominant Mode-I tensile loading of the crack tip during SENT testing. Specimens were prestretched to 35% axial strain, at a constant displacement rate of 5 \(\mu\text{m/s}\), as this was the maximum applied strain to which all specimens could be consistently prestretched without material failure. The prestretched specimen is also observed to exhibit a higher stiffness and experiences a larger maximum stress than the specimen with no prestretch due to alignment of the polymer chains during prestretching.

Representative plots of applied load versus displacement for SENT tests of the rubber toughened specimens are depicted in Fig. 8. The SENT tests were performed at a constant displacement rate of 5 \(\mu\text{m/s}\). All material types show initial linear elastic behavior up to a defined yield peak before subsequent failure. The calculated critical stress intensity factor \((K_{\text{c}})\) for the rubber toughened SP-PMMA \((2.1 \text{ MPa-m}^{1/2})\) was expectedly higher than that of the non-toughened SP-PMMA \((1.6 \text{ MPa-m}^{1/2})\) due to the toughening effect of the rubber nanoparticles.

Visible activation along the crack of the rubber toughened SP-PMMA was observed (see Supplementary Information). No visible activation was observed, however, for the untoughened SP-PMMA specimens or for the controls where the polymer chains were either not attached across the spiro bond or the SP molecule was absent altogether. The enhanced SP activation in the rubber toughened SP-PMMA specimens is presumably the result of increased plastic deformation afforded by the presence of the rubber nanoparticles. Examination of the fracture surface of a rubber toughened SP-PMMA specimen after SENT testing by SEM revealed a large number of voids on the surface indicative of cavitation of the rubber nanoparticles (Fig. 9a). Cavitation initiates large-scale shear yielding of the polymer [45,46,53,54] and results in improved mechanophore activation for SP-PMMA during fracture testing. An SEM image of the fracture surface of an untoughened SP-PMMA specimen obtained after SENT testing is shown in Fig. 9b. Here, the surface is relatively smooth in contrast to that of the rubber toughened SP-PMMA with no evidence of cavitation since these specimens contained no rubber nanoparticles.

3.2. Fluorescence analysis

An increase in fluorescence intensity with increasing strain was observed for the rubber toughened SP-PMMA specimen (Fig. 10a). The fluorescence images in Fig. 10b show initiation of SP activation...
at the crack tip and then a growing region of fluorescence (activation zone) as crack propagation progressed. The full field fluorescence intensity also increased monotonically until complete failure of the specimen.

The change in fluorescence intensity for the rubber toughened specimens is shown in Fig. 11. Analysis of the fluorescence images of the untoughened SP-PMMA specimens (not shown) revealed a slight increase in fluorescence intensity near failure suggesting a small amount of SP activation near failure. In contrast, the toughened SP-PMMA shows a large increase in fluorescence intensity that initiates beyond ca. 2% strain. This result supports the hypothesis that the inclusion of rubber nanoparticles increased plastic deformation during mechanical testing and improved the degree of mechanophore activation. No change in fluorescence intensity was observed for the rubber toughened difunctional control, confirming that the SP activation in the SP-linked specimens was the result of mechanical loading alone and not UV irradiation or heat [20]. As expected, no fluorescence signal was detected for the rubber toughened PMMA specimens since these specimens contained no SP molecules.

3.3. Activation zone size and plastic zone size analysis

The width, length and equivalent size of the activation zone were measured using the method described in the Section 2.5. Initially, all three measures of activation zone increase linearly with normalized crack length (see Fig. 12a). As the crack propagates, however, there is a noticeable plateau in the activation zone length (l_{act}) as the size of the remaining ligament in the specimen (i.e. W-a) becomes smaller until reaching the physical limit of the specimen. This trend is not observed for the activation zone width (w_{act}) because the region available for activation in that direction is not limited by specimen dimensions. The size of the equivalent activation zone (r_{act}) is at first coincident with both length and width measurements validating the assumption of a perfectly circular activation zone. With further crack growth, the equivalent activation zone size then falls between the activation zone length and width measurements. The equivalent activation zone size continues to increase with increasing crack propagation and is selected as the best representative measure of the size of the activation zone in subsequent data analysis. The effect of crack length on plastic zone size is shown in Figure S1.2 in the Supplementary Information.
A comparison of activation and plastic zone sizes reveals an initial linear increase in activation zone size with increasing plastic zone size (Fig. 12b). The slope of this linear region (first three data points) is 0.99. Two key points regarding fracture-induced mechanophore activation are drawn from these results. Firstly, SP activation occurs when there is some measure of plastic deformation in the material. This suggests that sufficient mobility of the polymer chains, which gives rise to plastic deformation, is necessary to break the spiro C–O bonds and activate the SP cross-linkers. Secondly, there is near perfect correlation between the activation zone and Irwin’s plastic zone prediction demonstrating a linear relationship between the increase in plasticity and the activation of SP. Beyond the physical limit of the plastic zone imposed by specimen dimensions (shown in Fig. 12b), minimal increases in activation zone size were observed.

4. Conclusions

Fracture-induced mechanophore activation was achieved in rubber toughened PMMA cross-linked with the mechanophore spiropyran. Specimens of cross-linked SP-PMMA toughened with core–shell rubber nanoparticles were fabricated and the response of the SP mechanophore during SENT testing was examined. A custom-built experimental setup was used which allowed for simultaneous mechanical testing and in situ full field fluorescence imaging. SP activation was observed during fracture and the region of activation along the crack was shown to increase in size and intensity with increasing crack length. The size of the activation zone was linearly related to the plastic zone size for moderate crack lengths, indicating an increase in SP activation with increasing plastic deformation ahead of the crack tip.

Mechanophore activation has potential for damage sensing in glassy bulk polymers and as an indicator of plastic deformation occurring ahead of the crack tip. Fracture-induced mechanophore activation may also prove to be a unique experimental method for a more detailed analysis of the fracture mechanics in rubber toughened elastic polymers. In addition to providing a measure of plastic deformation, the size and intensity of mechanophore activation can potentially be used to estimate the strain and stress fields ahead of a propagating crack.

Acknowledgments

This work was supported by a MURI grant from the Army Research Office; grant number W911NF-07-1-0409 and a GOALI grant from the National Science Foundation; grant number DMR 13-07354. SEM and TEM imaging were performed at the Microscopy Suite of the Beckman Institute for Advanced Science and Technology at the University of Illinois with the help of Scott Robinson. The custom-built experimental setup was designed and built by Brett Beiermann and Sharlotte Kramer in the Department of Materials Science and Engineering at the University of Illinois. The authors would also like to thank Dow Chemicals for providing the Paraloid EXL 2650a rubber nanoparticles.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.polymer.2014.06.019.

References

2.1. Mechanochromism: A Mechanism for Color Change

Mechanophotonic materials are a class of smart materials that exhibit color changes in response to mechanical stress. These materials use the principle of mechanochromism, which involves the use of mechanophores, molecules that change their chemical structure in response to mechanical force. The color change is due to a change in the electronic structure of the mechanophore, which affects the light absorption and hence the color of the material.

2.2. Mechanosensitivity: A Mechanism for Force Detection

Mechanosensitive materials are capable of detecting and responding to mechanical forces. These materials can be used for force sensing, which is crucial in many applications such as robotics, biomedical devices, and sensors. The mechanosensitivity is achieved through the use of mechanosensors, which are molecules that change their properties in response to mechanical stress.

2.3. Mechanomechanics: A Mechanism for Stress Generation

Mechanomechanics involves the generation of stress within materials in response to mechanical force. This can be achieved through the use of mechanomechanics, which involves the use of mechanical forces to generate stress within materials. The generated stress can be used for various applications such as stress-based sensors, actuators, and energy harvesters.

2.4. Mechanotransduction: A Mechanism for Energy Conversion

Mechanotransduction involves the conversion of mechanical energy into electrical or chemical energy. This can be achieved through the use of mechanotransduction, which involves the use of materials that can convert mechanical energy into electrical or chemical energy. The converted energy can be used for various applications such as energy storage, actuators, and sensors.

2.5. Mechanopharmacology: A Mechanism for Drug Delivery

Mechanopharmacology involves the use of mechanophores for drug delivery. This can be achieved through the use of mechanophores that change their chemical structure in response to mechanical force, which can be used to release drugs at specific locations.

Mechanobiology involves the study of the response of cells to mechanical forces. This can be achieved through the use of mechanobiology, which involves the study of the response of cells to mechanical forces. The response of cells to mechanical forces can be used for various applications such as tissue engineering and regenerative medicine.

2.7. Mechanotransduction: A Mechanism for Information Processing

Mechanotransduction involves the conversion of mechanical energy into electrical or chemical energy. This can be achieved through the use of mechanotransduction, which involves the use of materials that can convert mechanical energy into electrical or chemical energy. The converted energy can be used for various applications such as energy storage, actuators, and sensors.

2.8. Mechanopharmacology: A Mechanism for Drug Delivery

Mechanopharmacology involves the use of mechanophores for drug delivery. This can be achieved through the use of mechanophores that change their chemical structure in response to mechanical force, which can be used to release drugs at specific locations.

2.9. Mechanobiology: A Mechanism for Cell Response

Mechanobiology involves the study of the response of cells to mechanical forces. This can be achieved through the use of mechanobiology, which involves the study of the response of cells to mechanical forces. The response of cells to mechanical forces can be used for various applications such as tissue engineering and regenerative medicine.

2.10. Mechanotransduction: A Mechanism for Information Processing

Mechanotransduction involves the conversion of mechanical energy into electrical or chemical energy. This can be achieved through the use of mechanotransduction, which involves the use of materials that can convert mechanical energy into electrical or chemical energy. The converted energy can be used for various applications such as energy storage, actuators, and sensors.

2.11. Mechanopharmacology: A Mechanism for Drug Delivery

Mechanopharmacology involves the use of mechanophores for drug delivery. This can be achieved through the use of mechanophores that change their chemical structure in response to mechanical force, which can be used to release drugs at specific locations.

Mechanobiology involves the study of the response of cells to mechanical forces. This can be achieved through the use of mechanobiology, which involves the study of the response of cells to mechanical forces. The response of cells to mechanical forces can be used for various applications such as tissue engineering and regenerative medicine.

2.13. Mechanotransduction: A Mechanism for Information Processing

Mechanotransduction involves the conversion of mechanical energy into electrical or chemical energy. This can be achieved through the use of mechanotransduction, which involves the use of materials that can convert mechanical energy into electrical or chemical energy. The converted energy can be used for various applications such as energy storage, actuators, and sensors.

Mechanopharmacology involves the use of mechanophores for drug delivery. This can be achieved through the use of mechanophores that change their chemical structure in response to mechanical force, which can be used to release drugs at specific locations.

2.15. Mechanobiology: A Mechanism for Cell Response

Mechanobiology involves the study of the response of cells to mechanical forces. This can be achieved through the use of mechanobiology, which involves the study of the response of cells to mechanical forces. The response of cells to mechanical forces can be used for various applications such as tissue engineering and regenerative medicine.

2.16. Mechanotransduction: A Mechanism for Information Processing

Mechanotransduction involves the conversion of mechanical energy into electrical or chemical energy. This can be achieved through the use of mechanotransduction, which involves the use of materials that can convert mechanical energy into electrical or chemical energy. The converted energy can be used for various applications such as energy storage, actuators, and sensors.

2.17. Mechanopharmacology: A Mechanism for Drug Delivery

Mechanopharmacology involves the use of mechanophores for drug delivery. This can be achieved through the use of mechanophores that change their chemical structure in response to mechanical force, which can be used to release drugs at specific locations.

2.18. Mechanobiology: A Mechanism for Cell Response

Mechanobiology involves the study of the response of cells to mechanical forces. This can be achieved through the use of mechanobiology, which involves the study of the response of cells to mechanical forces. The response of cells to mechanical forces can be used for various applications such as tissue engineering and regenerative medicine.

2.19. Mechanotransduction: A Mechanism for Information Processing

Mechanotransduction involves the conversion of mechanical energy into electrical or chemical energy. This can be achieved through the use of mechanotransduction, which involves the use of materials that can convert mechanical energy into electrical or chemical energy. The converted energy can be used for various applications such as energy storage, actuators, and sensors.

2.20. Mechanopharmacology: A Mechanism for Drug Delivery

Mechanopharmacology involves the use of mechanophores for drug delivery. This can be achieved through the use of mechanophores that change their chemical structure in response to mechanical force, which can be used to release drugs at specific locations.

Mechanobiology involves the study of the response of cells to mechanical forces. This can be achieved through the use of mechanobiology, which involves the study of the response of cells to mechanical forces. The response of cells to mechanical forces can be used for various applications such as tissue engineering and regenerative medicine.

2.22. Mechanotransduction: A Mechanism for Information Processing

Mechanotransduction involves the conversion of mechanical energy into electrical or chemical energy. This can be achieved through the use of mechanotransduction, which involves the use of materials that can convert mechanical energy into electrical or chemical energy. The converted energy can be used for various applications such as energy storage, actuators, and sensors.

2.23. Mechanopharmacology: A Mechanism for Drug Delivery

Mechanopharmacology involves the use of mechanophores for drug delivery. This can be achieved through the use of mechanophores that change their chemical structure in response to mechanical force, which can be used to release drugs at specific locations.